紫金山脚下的别墅中,徐川沉迷于对黎曼猜想的研究。
虽然说他找到了一条通向弱·黎曼猜想的道路,但最终是否能解决这个问题,依旧是不得而知的。
而且,就算是这条思路有效果,能够继续推进黎曼猜想的临界带,要将其继续缩小和解决,也不是一件容易的事情。
数学家经常把黎曼ζ函数非平凡零点的实部和虚部分别写成σ和t,把复平面上0 0.35N,有争议则是此前哈佛大学沃尔特·杰弗里教授证明的No(T)>0.4N,你做到哪一步了?”
虽然黎曼猜想并不在他目前的研究范畴中,但作为解决韦伊猜想(椭圆曲线上的黎曼猜想)的学者,对于当前数学界黎曼猜想的进度他自然是清楚的。
压缩临界带的思路是当今数学界最常用,也是最有效的证明方法,徐川通过这种方式来研究黎曼猜想,他也并不意外。
对面,徐川摇了摇头,道:“继续压缩临界带的思路的确可行,但我并不准备这么做。”
闻言,德利涅脸上顿时就流露出了诧异的神色:“怎么说?”
思忖了一下,徐川开口道:“直觉吧?”
微微顿了顿,他接着道:“最近这些日子,关于黎曼猜想的研究和论文我看了不少,很多成果都是基于压缩临界带的思路做出来的。”
“不可否认,这些成果的确很出色。但就我个人的看法而言,想要将黎曼ζ函数和非平凡零点压缩到1/2这个数字,难度实在太大太大了。或者,甚至可以说没什么希望。”
“毕竟素数是无穷,非平凡零点数也是无穷的。光是这一点,就足够卡住目前压缩临界带的研究思路了。”
“这条路,或许能继续推进下去,甚至将其推进到0.45,0.46甚至更高都有可能,但想要将其稳定压缩到1,我觉得希望不大。”
“至少在目前传统的研究方式上希望不大。”
对于徐川来说,最近这些天的论文并不是白看的。
虽然说有帮助的东西并不算多,但关于压缩临界带,提高临界带上非平凡零点的数量的方法他却了解的相当清楚了。
直觉告诉他,这种方法虽然研究黎曼猜想很有效,但想要靠它解决黎曼猜想,将非平凡零点的实数根推进到1/2,可行度几乎是零。
否则他也不需要再另辟蹊径寻找一种其他的办法了,直接延续前人研究就行。
听着徐川的解释,德利涅皱起了眉头,脸上也带上了一些沉思。
通过压缩临界带,提高临界带上非平凡零点的数量和占比,这一方法是目前数学界研究黎曼猜想的主流方法之一,甚至可以说就是主流方法。
二十一世纪以后,针对黎曼猜想的研究,有超过三分之二是基于这种方法做出来的。
但即便是算上哈佛大学那边还有一些争议的No(T)>0.4N,其实他们距离最终的目标No (T)=N(T)(即所有非平凡零点在临界线上),以及还有很长的一段路要走。
0.4-N(T),或者说0.4-1,还相差0.6。
一个半世纪以来,他们的推进对于黎曼猜想来说,甚至可以用微不足道来形容。
但不管怎么说,压缩临界带,提高临界带上非平凡零点的数量和占比,这一方法依旧是目前关于研究黎曼猜想的最好方式。
然而徐川现在却说他并不准备走传统的压缩临界带的方式来研究黎曼猜想,甚至推测这条研究路线可能走不通。
虽然站到了他的高度,很少会因为一两个没有被证实的观点动摇自己的内心,但这次他的确是被自己这个学生所惊讶到了。
深吸了口气,德利涅快速的开口道:“如果方便的话,能告诉我你研究思路吗?”
在学术界,向一名正在研究难题的学者打听研究思路是一件可以说得上‘禁忌’的事情,哪怕这个人是他学生。
但此刻,德利涅也不在意这些东西了。
毕竟,这可是黎曼猜想,关系到数千条数学定理的黎曼猜想!
虽然说他找到了一条通向弱·黎曼猜想的道路,但最终是否能解决这个问题,依旧是不得而知的。
而且,就算是这条思路有效果,能够继续推进黎曼猜想的临界带,要将其继续缩小和解决,也不是一件容易的事情。
数学家经常把黎曼ζ函数非平凡零点的实部和虚部分别写成σ和t,把复平面上0 0.35N,有争议则是此前哈佛大学沃尔特·杰弗里教授证明的No(T)>0.4N,你做到哪一步了?”
虽然黎曼猜想并不在他目前的研究范畴中,但作为解决韦伊猜想(椭圆曲线上的黎曼猜想)的学者,对于当前数学界黎曼猜想的进度他自然是清楚的。
压缩临界带的思路是当今数学界最常用,也是最有效的证明方法,徐川通过这种方式来研究黎曼猜想,他也并不意外。
对面,徐川摇了摇头,道:“继续压缩临界带的思路的确可行,但我并不准备这么做。”
闻言,德利涅脸上顿时就流露出了诧异的神色:“怎么说?”
思忖了一下,徐川开口道:“直觉吧?”
微微顿了顿,他接着道:“最近这些日子,关于黎曼猜想的研究和论文我看了不少,很多成果都是基于压缩临界带的思路做出来的。”
“不可否认,这些成果的确很出色。但就我个人的看法而言,想要将黎曼ζ函数和非平凡零点压缩到1/2这个数字,难度实在太大太大了。或者,甚至可以说没什么希望。”
“毕竟素数是无穷,非平凡零点数也是无穷的。光是这一点,就足够卡住目前压缩临界带的研究思路了。”
“这条路,或许能继续推进下去,甚至将其推进到0.45,0.46甚至更高都有可能,但想要将其稳定压缩到1,我觉得希望不大。”
“至少在目前传统的研究方式上希望不大。”
对于徐川来说,最近这些天的论文并不是白看的。
虽然说有帮助的东西并不算多,但关于压缩临界带,提高临界带上非平凡零点的数量的方法他却了解的相当清楚了。
直觉告诉他,这种方法虽然研究黎曼猜想很有效,但想要靠它解决黎曼猜想,将非平凡零点的实数根推进到1/2,可行度几乎是零。
否则他也不需要再另辟蹊径寻找一种其他的办法了,直接延续前人研究就行。
听着徐川的解释,德利涅皱起了眉头,脸上也带上了一些沉思。
通过压缩临界带,提高临界带上非平凡零点的数量和占比,这一方法是目前数学界研究黎曼猜想的主流方法之一,甚至可以说就是主流方法。
二十一世纪以后,针对黎曼猜想的研究,有超过三分之二是基于这种方法做出来的。
但即便是算上哈佛大学那边还有一些争议的No(T)>0.4N,其实他们距离最终的目标No (T)=N(T)(即所有非平凡零点在临界线上),以及还有很长的一段路要走。
0.4-N(T),或者说0.4-1,还相差0.6。
一个半世纪以来,他们的推进对于黎曼猜想来说,甚至可以用微不足道来形容。
但不管怎么说,压缩临界带,提高临界带上非平凡零点的数量和占比,这一方法依旧是目前关于研究黎曼猜想的最好方式。
然而徐川现在却说他并不准备走传统的压缩临界带的方式来研究黎曼猜想,甚至推测这条研究路线可能走不通。
虽然站到了他的高度,很少会因为一两个没有被证实的观点动摇自己的内心,但这次他的确是被自己这个学生所惊讶到了。
深吸了口气,德利涅快速的开口道:“如果方便的话,能告诉我你研究思路吗?”
在学术界,向一名正在研究难题的学者打听研究思路是一件可以说得上‘禁忌’的事情,哪怕这个人是他学生。
但此刻,德利涅也不在意这些东西了。
毕竟,这可是黎曼猜想,关系到数千条数学定理的黎曼猜想!