……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
乔喻诧异的看了眼兰杰。
因为这道题的确很难,可以说是他认真学习数学以来遇到过的最难的一道方程求解题,所以讲的时候多少存了点炫耀的心思,是真讲的挺仔细。
但老好人竟然说他没听懂?
“呼……我说过的,我大学没怎么在代数几何、数论这块下功夫。如果只是初阶的还行,也就是只有本科时候学过的内容。更深的数论……我硕士阶段主攻的是组合数学,就是研究离散结构的组合性质,排列、组合、图、集、序列那一类的问题……
而且参加工作后,高中数学你懂的……至于奥赛中关于这方面的内容,也不会涉及的很深入,只会涉及高等代数跟数论最基础的一部分东西。主要培养的还是一个用初级数学方法,来解决问题的能力。所以……”
迎着乔喻探寻的目光,兰杰有些结巴的解释着。
好吧,这的确是挽尊。
毕竟数学这门学科,也分了无数个方向……而数论显然是最需要天赋的那个方向。
不懂其实很正常。
关键是乔喻的年纪跟经历太伤人了。
“哦,这样啊……我懂的,这属于术业有专攻,这些东西恰好不是您擅长的那个方向。”乔喻很体贴的说道,甚至再次用上了敬称了。
兰杰张了张嘴,但却没说什么。
这孩子已经够给面子了,再多说,就显得很像狡辩了,没什么意思。都承认不懂了,不如更坦然一点。
于是兰杰抬手拍了拍乔喻的肩膀,说道:“别急,相信我,未来肯定有一天,那个论坛上的大佬们,都会以能受邀参加你的报告会为荣!到时候你如果还记得我,就邀请我去坐第一排,对了,到时候让我导师坐我旁边。”
乔喻不明所以,问了句:“报告会是什么?”
兰杰此时真的很有耐心,因为他很清楚,自己能教眼前这个孩子的东西已经不多了。
“比如你解决了一个数学上其他人都没解决的难题,就好像你求出了这个方程的数值解一样。你写出了一篇论文,被认可,这个时候一些知名大学或者数学研究机构就会邀请你去跟同领域的数学家分享你解题的思路跟一些想法。”
说完,兰杰顿了顿,又继续说道:“当然,数学是的极限就是没有极限。你解决的问题越难,越知名,报告会的层次就越高!而且不止是解开某个难题,如果你能发明一些新的数学工具,并得到广泛认可,同样会受邀在一些很重要的数学会议上做报告。”
听完,乔喻若有所思。
兰杰像是想到了什么,又主动补充道:“那个……你别总想着那些很高级的数学会议邀请你做报告,还要给你很多钱啊!等你到了那个层级就知道了,你只要能坐到那个报告位置上,钱自然会有的,把格局打开点。”
“哦!明白了!”乔喻点了点头,一脸受教的样子,但是不是真听进去了,兰杰看不出来。
不过他也懒得理了。
就以乔喻目前所表现出的心智,等他真冲到了那个地位,自然就懂了,说不定能比他还懂。
“你放心吧,兰老师,如果有一天我真的能受邀去参加你说的那种报告会,一定每次都在第一排留两个空座位,你想带谁去都行。也不一定每次都要带导师嘛。”乔喻颇有些兴奋的承诺道。
大概也只有这种炫耀的时候,这小子才会表现出一丢丢少年意气的样子。
兰杰只能苦笑……
去听数学会议,他不带导师还能带谁?
说实话,跟着导师一起去听,也纯粹是为了面子。而不是他真想去听这些东西。一来,高中数学老师不需要懂那么多花里胡哨的东西;二来,即便是数学老师,在听自己听不懂的数学难题时,一样会昏昏欲睡。
这都是不以人的意志为转移的。
“行,加油吧!我从现在起期待那一天的到来。”兰杰一脸认真的说道。
……
接下来的高铁行程,两人又安静了下来。
乔喻信心满满的继续刷起了手机,不过他已经没去看论坛上那些大佬的评价了。
兰杰那番话是真的让他对所谓的大佬少了一层滤镜,更没了担忧。
那些家伙是显得很厉害,不过就是因为比他多活了十几二十年的。
最重要的是,当乔喻发现认真给兰老师讲解之后,老好人依然坦然承认他没听懂之后,他也确定了这个方程的含金量。
难怪那些教授都以为他是研究生,而且还是专门研究数论的研究生了。
一般的数学本科生,听了解题过程依然没能完全理解,那些教授怎么可能想得到他不过是一个刚刚毕业的初中生?
所以现在他安全地起飞。
这方面他很有经验。
小学的时候,他就靠着这一招,平均下来每个月能赚两、三千块呢!
乔喻自觉非常了解成年人那种对合理性永远保持怀疑的自信心。
小学时候,有眼红的小朋友到老师那里告状,说他帮别人写作,帮人考试作弊什么的,老师都根本不带信的……
一个每次考试就只能考十几、二十分的家伙,各方面都表现稀烂的家伙,还能帮其他同学做这些事?哪怕半信半疑,只要没有实际的证据,最后都不了了之。
所以只要他不主动在那些教授面前登陆论坛,那些大佬大概打死都不会怀疑到他身上。
没了这层顾虑,乔喻只觉得一身轻松。干脆继续在手机上看起了视频。
至于他身边的兰杰,直接进入了发呆状态。
手机是真看不下去了。
之前还想要试探出乔喻的水平上限在哪里,但刚刚发生的一切让他明白之前的想法稍微有些可笑了。
说实话,他是真不太想得通,为什么没有经历过代数与数论系统学习的家伙,竟然能徒手把这种难度的方程给解开。真的,他之前已经很高看乔喻了,但此时却发现,他依然小看这孩子了。
这自学能力……
兰杰想到了有次组会上,导师的一句感慨,原话是:有一种天才,人家就是能一眼便看透抽象问题的本质,人家一天能搞懂的东西,你们可能要三年,所以你们要努力啊!
当时这句话是形容加州大学伯克利分校一个来学校做交流的年轻博士生的,兰杰还记得,那个爱尔兰小伙子跟他年纪差不多,但人家已经读博了,他却才刚刚考研上岸不久……
现在看来,他也发现了这么一个宝贝,甚至能力上比对方有过之而无不及。
这一刻,兰杰心头也升起了极为强烈的想要带着乔喻去给导师炫耀一番的心思……
如果能在导师的办公室里,指着乔喻说一句:“老师,您看,这是我学生,专门带来让您考考他的。”
那感觉,光是想想都觉得巨爽。
而且说起来,潇州其实距离临海也不算远来着,如果能说服乔喻跟自己一起去母校双旦大学看看……
当脑海里闪过这个念头,兰杰突然又觉得自己太过可耻了!
校长可是对他委以重任,指望着乔喻铁一中拿一块IMO金牌呢,这么早就让孩子曝光了,直接引来一堆教授抢人,大概率会干扰乔喻心态的。
更别提那些教授大都是人精,跟乔喻接触几次,大概就能摸透乔喻的性子,那就真危险了……
没办法,这个孩子的软肋简直太明显了。
兰杰甚至怀疑乔喻就是故意展现出对钱的无限渴望,以诱惑那些对他感兴趣的大人竭尽所能的在他身上投资。
所以还是晚一点吧。
不过一年而已……
等乔喻在世界大赛上拿到了金牌,拿到保送华清、燕北资格的时候,再说吧!
感谢_晚来天欲雪、老理空间的打赏鼓励!
继续求追订,求月票啊,兄弟们!
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
乔喻诧异的看了眼兰杰。
因为这道题的确很难,可以说是他认真学习数学以来遇到过的最难的一道方程求解题,所以讲的时候多少存了点炫耀的心思,是真讲的挺仔细。
但老好人竟然说他没听懂?
“呼……我说过的,我大学没怎么在代数几何、数论这块下功夫。如果只是初阶的还行,也就是只有本科时候学过的内容。更深的数论……我硕士阶段主攻的是组合数学,就是研究离散结构的组合性质,排列、组合、图、集、序列那一类的问题……
而且参加工作后,高中数学你懂的……至于奥赛中关于这方面的内容,也不会涉及的很深入,只会涉及高等代数跟数论最基础的一部分东西。主要培养的还是一个用初级数学方法,来解决问题的能力。所以……”
迎着乔喻探寻的目光,兰杰有些结巴的解释着。
好吧,这的确是挽尊。
毕竟数学这门学科,也分了无数个方向……而数论显然是最需要天赋的那个方向。
不懂其实很正常。
关键是乔喻的年纪跟经历太伤人了。
“哦,这样啊……我懂的,这属于术业有专攻,这些东西恰好不是您擅长的那个方向。”乔喻很体贴的说道,甚至再次用上了敬称了。
兰杰张了张嘴,但却没说什么。
这孩子已经够给面子了,再多说,就显得很像狡辩了,没什么意思。都承认不懂了,不如更坦然一点。
于是兰杰抬手拍了拍乔喻的肩膀,说道:“别急,相信我,未来肯定有一天,那个论坛上的大佬们,都会以能受邀参加你的报告会为荣!到时候你如果还记得我,就邀请我去坐第一排,对了,到时候让我导师坐我旁边。”
乔喻不明所以,问了句:“报告会是什么?”
兰杰此时真的很有耐心,因为他很清楚,自己能教眼前这个孩子的东西已经不多了。
“比如你解决了一个数学上其他人都没解决的难题,就好像你求出了这个方程的数值解一样。你写出了一篇论文,被认可,这个时候一些知名大学或者数学研究机构就会邀请你去跟同领域的数学家分享你解题的思路跟一些想法。”
说完,兰杰顿了顿,又继续说道:“当然,数学是的极限就是没有极限。你解决的问题越难,越知名,报告会的层次就越高!而且不止是解开某个难题,如果你能发明一些新的数学工具,并得到广泛认可,同样会受邀在一些很重要的数学会议上做报告。”
听完,乔喻若有所思。
兰杰像是想到了什么,又主动补充道:“那个……你别总想着那些很高级的数学会议邀请你做报告,还要给你很多钱啊!等你到了那个层级就知道了,你只要能坐到那个报告位置上,钱自然会有的,把格局打开点。”
“哦!明白了!”乔喻点了点头,一脸受教的样子,但是不是真听进去了,兰杰看不出来。
不过他也懒得理了。
就以乔喻目前所表现出的心智,等他真冲到了那个地位,自然就懂了,说不定能比他还懂。
“你放心吧,兰老师,如果有一天我真的能受邀去参加你说的那种报告会,一定每次都在第一排留两个空座位,你想带谁去都行。也不一定每次都要带导师嘛。”乔喻颇有些兴奋的承诺道。
大概也只有这种炫耀的时候,这小子才会表现出一丢丢少年意气的样子。
兰杰只能苦笑……
去听数学会议,他不带导师还能带谁?
说实话,跟着导师一起去听,也纯粹是为了面子。而不是他真想去听这些东西。一来,高中数学老师不需要懂那么多花里胡哨的东西;二来,即便是数学老师,在听自己听不懂的数学难题时,一样会昏昏欲睡。
这都是不以人的意志为转移的。
“行,加油吧!我从现在起期待那一天的到来。”兰杰一脸认真的说道。
……
接下来的高铁行程,两人又安静了下来。
乔喻信心满满的继续刷起了手机,不过他已经没去看论坛上那些大佬的评价了。
兰杰那番话是真的让他对所谓的大佬少了一层滤镜,更没了担忧。
那些家伙是显得很厉害,不过就是因为比他多活了十几二十年的。
最重要的是,当乔喻发现认真给兰老师讲解之后,老好人依然坦然承认他没听懂之后,他也确定了这个方程的含金量。
难怪那些教授都以为他是研究生,而且还是专门研究数论的研究生了。
一般的数学本科生,听了解题过程依然没能完全理解,那些教授怎么可能想得到他不过是一个刚刚毕业的初中生?
所以现在他安全地起飞。
这方面他很有经验。
小学的时候,他就靠着这一招,平均下来每个月能赚两、三千块呢!
乔喻自觉非常了解成年人那种对合理性永远保持怀疑的自信心。
小学时候,有眼红的小朋友到老师那里告状,说他帮别人写作,帮人考试作弊什么的,老师都根本不带信的……
一个每次考试就只能考十几、二十分的家伙,各方面都表现稀烂的家伙,还能帮其他同学做这些事?哪怕半信半疑,只要没有实际的证据,最后都不了了之。
所以只要他不主动在那些教授面前登陆论坛,那些大佬大概打死都不会怀疑到他身上。
没了这层顾虑,乔喻只觉得一身轻松。干脆继续在手机上看起了视频。
至于他身边的兰杰,直接进入了发呆状态。
手机是真看不下去了。
之前还想要试探出乔喻的水平上限在哪里,但刚刚发生的一切让他明白之前的想法稍微有些可笑了。
说实话,他是真不太想得通,为什么没有经历过代数与数论系统学习的家伙,竟然能徒手把这种难度的方程给解开。真的,他之前已经很高看乔喻了,但此时却发现,他依然小看这孩子了。
这自学能力……
兰杰想到了有次组会上,导师的一句感慨,原话是:有一种天才,人家就是能一眼便看透抽象问题的本质,人家一天能搞懂的东西,你们可能要三年,所以你们要努力啊!
当时这句话是形容加州大学伯克利分校一个来学校做交流的年轻博士生的,兰杰还记得,那个爱尔兰小伙子跟他年纪差不多,但人家已经读博了,他却才刚刚考研上岸不久……
现在看来,他也发现了这么一个宝贝,甚至能力上比对方有过之而无不及。
这一刻,兰杰心头也升起了极为强烈的想要带着乔喻去给导师炫耀一番的心思……
如果能在导师的办公室里,指着乔喻说一句:“老师,您看,这是我学生,专门带来让您考考他的。”
那感觉,光是想想都觉得巨爽。
而且说起来,潇州其实距离临海也不算远来着,如果能说服乔喻跟自己一起去母校双旦大学看看……
当脑海里闪过这个念头,兰杰突然又觉得自己太过可耻了!
校长可是对他委以重任,指望着乔喻铁一中拿一块IMO金牌呢,这么早就让孩子曝光了,直接引来一堆教授抢人,大概率会干扰乔喻心态的。
更别提那些教授大都是人精,跟乔喻接触几次,大概就能摸透乔喻的性子,那就真危险了……
没办法,这个孩子的软肋简直太明显了。
兰杰甚至怀疑乔喻就是故意展现出对钱的无限渴望,以诱惑那些对他感兴趣的大人竭尽所能的在他身上投资。
所以还是晚一点吧。
不过一年而已……
等乔喻在世界大赛上拿到了金牌,拿到保送华清、燕北资格的时候,再说吧!
感谢_晚来天欲雪、老理空间的打赏鼓励!
继续求追订,求月票啊,兄弟们!